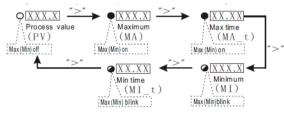
Instruction Manual

PMD2XT-XX-012-A Digital Pyrometer

- A. Specifications
 - Power Supply: 9 to 16 VDC (optional 24 VDC)
 - Power Consumption: < 2W
 - Sampling Rate: 4 samples/second
 - Accuracy: ±0.2% full scale ±1
 - Display Range: -1999 ~ 9999
 - Relay Contact Rating: 1A @ 30VDC
 - Retransmit Open Circuit Voltage: 15V
 - Case Dimensions: 48x24x75 mm
 - Mounting Cutout Dimension: 45x22 mm
 - LED Display: 0.28" (7 mm)
 - Operating Temperature: 0 ~ 50C, <85% RH
- B. Front Panel

A. Specifications


Alarm & relay J1 indicator

- 2 Up key
- ③ Shift key
- ④ Set Key
- S Maximum & Minimum value indicator
- 6 Display Window

1. AL on indicates alarm is on & J1 relay is pulled in (closed)

2. MAX(MIN) on when display window shows the maximum value or the time of the MAX. MAX(MIN) blinking when display window shows the minimum value or the time of MIN.

3. ">" Shift key: In the parameter setting mode, press this key to select the digit to be changed. In the normal operation mode, press this key to change the display in the sequence shown in the diagram below.

4. "^" Up key: In the parameter setting mode, press this key to increase the displayed value. When displaying Max/Min, press & hold it for 3 seconds to clear the Max/Min stored. In normal function, this key has two functions, Show Operation Time & Change Display Brightness. Press & hold this key down to show the Operation Time since on. Release the key to display the current temperature (process value). Each time the key is pressed, the display brightness will also be changed from bright to dim or from dim to bright.

C. Parameter Setting

1. Basic Parameter

See [Fig3] for programming flow chart (Press "SET" key then input code 0089 to enter)

Symbol		Description	Setting range	Inintial	Note
la E 9	Inty	Input Type	Type See Table 1		
PuL	PuL	Scale low	- 1999~9999	0	4
PuH	PuH	Scale high	- 1999~9999	1000	4
dot	dot	Decimal point	0000~0.000	0.000	4
PS 6	PSb	Zero offset	- 1000~ 1000	0	1
PS bF	PSbF	Range coefficient	0.500~2.000	1.000	2
EarF	CorF	Temperature unit	E:°C F:°F	F	
FILE	FiLt	Digital filter	0~3	0	3
End	End	Exit			

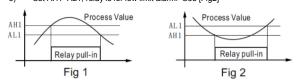
Note 1: for correcting the offset at Zero: Display = measurement + PSb Note 2: for correcting the error at Max: Display = measurement + PSbf Note 3: Digital filter: 0=no filter, 1=weak, 2=medium, 3=strong Note 4: These parameters define the scale boundary & resolution of the display value. They do not apply to temperature sensors.

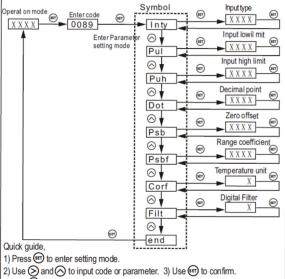
[Table1] Input Type Options

Symbol	Input type	Range	Res.	Accy.	Impedance	
E	TC, Type T	-200~400°C	1°C(F)	0.3%	100K	
C .	TC, Type R	-50~1600°C	1°C(F)	0.3%	100K	
L	TC, Type J	-200~1200°C	1°C(F)	0.2%	100K	
H r E	TC, WRe3-WRe25	0~2300°C	1°C(F)	0.2%	% 100K	
Ь	TC, Type B	350~1800°C	1°C(F)	0.3%	100K	
S	TC, Type S	-50~1600°C	1°C(F)	0.3%	100K	
P	TC, Type K	-200~1300°C	1°C(F)	0.2%	100K	
Ε	TC, Type E	-200~900°C	1°C(F)	0.2%	100K	
P (00	RTD, Pt100	-199.9~600.0°C	0.1°C(F)	0.2%	(0.2mA)	
650	RTD, Cu50	-50.0~150.0°C	0.1°C(F)	0.5%	(0.2mA)	
375 r	0~375 Ω Pressure			0.2%	(0.2mA)	
75 <i>6</i> u	0~75 mV Current	1		0.1%	100K	
30 <u>6 u</u>	0~30 mV]		0.1%	100K	
Su	0~5 V	Display range	16 bit A/D	0.1%	100K	
1-50	1~5 V	can be set in	10 DILAVD	0.1%	100K	
100	1~10 V	-1999~9999		0.1%	100K	
106 R	0~10 mA			0.3%	150Ω	
20A A	0~20 mA			0.2%	150Ω	
4-20	4~20 mA]		0.2%	150Ω	

(TC = Thermocouple Sensor)

2. Alarm Parameter (Press "SET" key then input code 0001 to enter)


Symbol	Name	Description	Range	Initial	Note
- A H I	AH1	J1 pull in Value	-1999~9999	900	
ALI	AL1	J1 drop out value	-199~9999	800	4
882	AH2	J2 pull in Value	-1999~9999	900]
RL2	AH2	J2 drop out Value	-1999~9999	800	
End	End	Exit			


Alarm Parameter setting is similar to the Basic Parameters setting in [Fig3] except the access code is 0001 instead of 0089

Note 4: Relay action setting (PMD-A meter does not contain J2 relay. Its settings (AH2 & AL2 can be ignored). 1) Set AH1=AL1, relay is disabled

- Set AH1>AL1, relay is for high alarm limit. See [Fig1] 3) Set AH1<AL1, relay is for low limit alarm. See [Fig2]

[Fig3] Basic Parameter setting flow chart

Use to select the next parameter.

5) When no key is pressed for ~ 50 sec, the meter will return to normal mode.

3. Peak Value (Press "SET" key then input code 0037 to enter)

Symbol	Name	Description	Range	Initial	Note
ā B	MA	Maximum value	on/oFF	an	
6 R-E	MA-t	Time of maximum	on/oFF	oFF	5
ā l	MI	Minimum value	an/aFF	o FF	
ñ l-E	MI-t	Time of minimum	an/aFF	oFF	
End	End	End			

Note 5: Peak function is interlocked.

When MA is turned off, MA-t can't be set

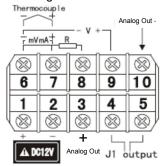
2)́ When MI is turned off, MI-t can't be set

Peak Value setting is similar to the Basic Parameters setting in [Fig3] except the access code is 0037 instead of 0089

Reset the Peak value:

The peak values are stored in the memory even after the meter is powered off. To reset them, change the display to show MA, MA-t, MI, or MI-t. Then, press & hold "^" key for 3 seconds. The display will show "-----" indicating the memory (for all four parameters) is reset. The meter will start to catch the new peak after 2 seconds.

4. Retransmit (Analog Output) (Press "SET" key then input code 0036 to enter)

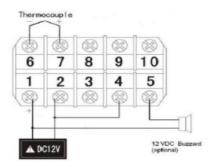

Symbol	Name	Description	Range	Initial	Note
0669	obty	Output type	0-20/4-20 mA	4-20	6
abL	obL	output low limit	-1999-9999	0.000	7
а Б Н	obH	output High limit	-1999-9999	100.0	8
End	End	Exit			

Retransmit setting is similar to the Basic Parameters setting in [Fig3] except the access code is 0036 instead of 0089

Note 6: Output type section. User can select either 0-20 mA or 4-20 mA. Note 7: Output lower limit. The LED display value when output is at 0 mA or 4 mA.

Example: If you want 100C to output 0 mA then set obL=100 Note 8: Output high limit. The LED display value when output is at 20 mA. Example: If you want 1000C to output 20 mA then set obH=1000 This number will affect the resolution of the signal

D. Terminal Assignment



 1 & 2 are for power input
4 & 5 are for alarm relay output. When alarm is turned on, terminals 2 & 5 are internally connected. To drive a 12V buzzer, connect one lead of the buzzer to the +12V. Connect the other lead to terminal 5. 3) 6, 7, 8, & 9 are for different type of signal input. Example: Use 6 & 7 for EGT thermocouple probe

4) 3 & 10 are for retransmit (analog output).
1~5VDC or 0~5VDC (depending on "obty" setting)

E. Application Example

Exhaust Gas Temperature Measurement

The Sensor Connection

55 East Long Lake Road, #505, Troy, MI 48085 USA

Tel: 248-636-1515 sales@thesensorconnection.com

